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ON THE RELATIVISTIC OSCILLATOR
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The relativistic oscillator is substantially more complex to solve than the classical oscillator
because the di!erential equations of motion are non-linear. The oscillatory motion can be
non-linear in classical systems as, for example, in the case of a stretched string with
a midpoint mass [1], and it is of interest to estimate the non-linearity present due to the
relativistic nature of motion, in particular, in view of the possibility of increasingly more
accurate measurements. The relativistic oscillator can be considered as a special case of
the relativistic motion of a particle in a central "eld of force, providing that the force
is directly proportional to the distance from the centre of force. The theory of relativistic
motion can be represented in classical space and time as in the Newtonian theory
by introducing a generalized velocity-dependent force, which contains a constant param-
eter equal to the speed of light [2, 3]. In the case of an inverse-square "eld of force,
the solution can be found in terms of elementary functions, but that does not apply to
the case of a direct-distance "eld of force. If the initial velocity of the particle is in
the direction of the centre of force, the motion is rectilinear and the di!erential equation of
motion is

mxK#kx (1!xR 2/c2)3@2"0, (1)

where xR and xK are the "rst and the second order derivatives of x with respect to time, m is the
rest mass of the particle, k is the coe$cient of restitution of the force, and c is the speed of
light in a vacuum. Since the angular momentum with respect to the centre of force is equal
to zero, the case of rectilinear motion has to be treated separately, rather than as
a particular case of planar motion. Equation (1), which includes the e!ect of longitudinal
mass increase, was adopted by other authors as the di!erential equation of relativistic
one-dimensional oscillator; with a rescaling of the variables it can be written in a form
obtained by setting the parameters m, k, and c equal to unity, and a periodic solution can be
found by a transformation of the variables and the method of harmonic balance [4].
However, since the exactness of the method of harmonic balance remains in question, it can
be advantageous to "nd an approximate solution, as accurate as possible in terms of
elementary functions, by the classical method.

The "rst integral of motion obtained by the integration of equation (1) that represents the
conservation of energy in the form

mc2(1!xR 2/c2)~1@2#1
2
kx2"E, (2)

where E is the constant of integration equal to the relativistic total energy of the particle,
inclusive of the rest energy, in the oscillator potential. Equation (2) can be solved
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algebraically for the derivative xR and gives

xR "$cM1![mc2/(E!1
2
kx2)]2N1@2, (3)

where the two signs correspond to two possible directions of motion.
The extrema values of the variable x are determined by instants where the derivative

xR vanishes; then equation (3) with the left-hand side set equal to zero can be solved
algebraically for the variable x, giving for the distance extremum

x
e
"$[2(E!mc2)/k]1@2, (4)

where the two signs correspond to two extrema of the motion for a given relativistic total
energy E.

The extrema values of the derivative xR are given by equation (3) for x"0, that is, they are
at the equilibrium position. The limits as the derivative extrema approach $c correspond
to an in"nite relativistic total energy E.

The "nal equation of motion x"x (t) should follow by an integration of equation (3), but
it is not reducible to elementary functions. Upon introducing the variable y"mc2/
(E!1

2
kx2), equation (3) takes the form

yR "$21@2uy3@2(ey!1)1@2(1!y)1@2(1#y)1@2, (5)

where yR on the left-hand side is the "rst-order derivative of y with respect to time,
u"(k/m)1@2, and e"E/mc2'1, since the oscillator potential is always positive. The range
of the variable is 1/e(y(1. In the case of low energy, e is close to unity and the range of
the variable is limited to the vicinity of one; in the ultrarelativistic limit, e increases to
in"nity and the range expands to the interval (0, 1).

Upon introducing the variable z"(ey!1)/(e!1), equation (5) becomes

zR"$21@2ue~3@2[1#(e!1)z]3@2[e#1#(e!1)z]1@2z1@2(1!z)1@2, (6)

where zR on the left-hand side is the "rst order derivative of z with respect to time. The range
of the variable is 0(z(1, where the lower limit corresponds to the equilibrium position
where x"0, y"1/e, and the upper limit to the amplitude positions given by equation (4),
where y"1. At the relativistic energy equal to twice the rest energy, that is E"2mc2, the
energy parameter e"2, and it is opportune to restrict the solution to the energy range
given by 1(e(2, that is 0(e!1(1, when the square-bracket factors in equation (6)
can be expanded in convergent Maclaurin series.

However, expansions in power series are likely to lead to a su$ciently accurate solution
only when the parameter e"e!1 is much less than unity, which is valid at a su$ciently
low energy, and that is assumed in the following.

In the approximation of low energy, the reciprocals of the square-bracket factors in
equation (6) can be expanded in power series and multiplied; the ensuing series including the
non-expanded factors can be integrated term by term, and the integrals are reducible to
elementary functions. The result obtained by retaining terms up to the "rst order is

sin~1(2z!1)#(7
4
)e(z!z2)1@2"$2qut!n/2, (7)

where q is a coe$cient of order unity and a function of the parameter e only, and the
additional phase term on the right-hand side is due to the inverse sine function at t"0 and
z"0; it is assumed that the particle is initially at the equilibrium position with an initial
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velocity equal to the maximum velocity. Upon taking the sine of both sides of equation (7)
and applying the addition formula to the left-hand side, it follows that

(2z!1) cos[(7
4
)e(z!z2)1@2]#[1!(2z!1)2]1@2 sin[(7

4
)e (z!z2)1@2]"!cos(2qut), (8)

Upon expanding the sine and cosine factors on the left-hand side of equation (8) in power
series, the resulting equation to the "rst order is

z#(7
4
)e (z!z2)"sin2(qut), (9)

which can be solved algebraically as a quadratic equation in the variable z. The solution
with minus sign is "nite and can be expanded to give

z"sin2(qut)!(7
4
)e sin2(qut) cos2(qut)#2. (10)

The solution for the intermediate variable y follows directly from equation (10); then the
reciprocal and the square root expansions give for the original variable

x"(2mc2e/k)1@2M[1!(3
8
)e] sin(qut)#(3

8
)e sin3 (qut)N#2, (11)

where to this order of approximation, q"1!(3
8
)e. The amplitude factor in equation (11) is

the same as the extremum value of x given by equation (4), and the two signs are now
incorporated in the sine function. In the limit of very low energy, the second term in the
curly bracket expression becomes negligible, the coe$cient q approaches unity, the quantity
mc2e approaches the classical total energy, and the oscillator becomes simple harmonic.

By use of a basic trigonometric reduction and equation (4), equation (11) can be written in
the form

x/Dx
e
D"[1!( 3

32
)e] sin(qut)!( 3

32
)e sin(3qut)#2, (12)

which di!ers in coe$cients from an analogous result obtained by the method of harmonic
balance [4].

At an energy when the relativistic e!ects are signi"cant, the amplitude of oscillations is
higher than in the classical case, the parameter q is less than unity and the basic frequency of
oscillations is lower than classically, as can be seen from equations (11) and (12), and the
basic period of oscillations is greater than 2n/u. Since this approximation is valid when the
parameter e is much less than unity, the cases of high energy and the ultrarelativistic limit
require further investigation.
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